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Abstract: ESR measurements and AM1 calculations show that ester substituted radicals 2 and 6 prefer conformation
A as a result of allylic strain effects. But dipolar repulsion between substituents X and CO2Et in 2 and 6 has a
pronounced effect on the conformation and the stereoselectivity of radicals 2 and 6.

Recently, Hart et al.! and Giese et al.2 have shown that enolate radicals substituted by a
tertiary alkyl group adopt preferred conformation A. In this conformer the hydrogen atom at the
tertiary carbon atom points towards an oxygen of the ester group, thus minimizing A-strain effects.
According to this model, the different shielding by the substituents R and X at the prochiral radical
center induces stereoselectivity of the radical hydrogen abstraction reaction.1-4
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Guindon et al.5 pointed out that dipole dipole interactions can play a role if substituent X at
the stereogenic center is a powerful electronegative group. Thus, conformer B should be
disfavoured not only because of the steric (A-strain model) but also because of dipolar effects
(Cornforth model). Furthermore, the dipolar repulsion between the ester group and substituent X
should distort the ideal A-strain conformation by increasing the dihedral angle 6.

In order to study the importance of polar effects on the conformation and stereoselectivity of
enolate radicals, we generated radicals 2a-c from bromides 1a-c.6 The energy difference
between the conformers 2A and 2B, the dihedral angle 8 and the ESR coupling constant a(Hp)
were calculated,” compared with the experimental coupling constant,8 and the stereoselectivity of
the hydrogen atom abstraction from BuaSnH was measured.
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Table 1. influence of substituent X on the energy difference AE2g-AE24, dihedral angle 6,
the p-coupling a(Hpg), and the stereoselectivity of hydrogen atom abstraction.

AM1 Calculation ESR H-Abstraction
X 0 AE2B-AE2a  a(Hg)cal.  a(Hp)exp. 3:4 Yield
kcal/mol Gauss Gauss (-78°C) (%)
Me 4° 0.5 7.0 6.0 66 :34 85
OMe 34° 2.4 9.0 8.0 97:3 90
F 31° 2.3 11.0 9.0 95:5 88

According to AM1 calculations radicals without (X=Me) as well as with (X=OMe, F) powerful
electronegative substituents preferentially adopt conformation 2A. But the energy differences
AE2g-AE2p increases from 0.5 to 2.3-2.4 kcal/mol if X=Me is exchanged by the polar OMe or F
groups (Table 1). In the same order the dihedral angle 6 of the minimum conformation 2A is
increased from nearly 0° to larger than 30°. This increase of the energy difference and of the
dihedral angle leads 1o an increase of the B-coupling constant in the ESR spectrum. A complete
conformational analysis for the rotation around the bond between the radical and the stereogenic

center is shown in Fig. 1.
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Fig. 1. Conformational analysis of radicals 2 (X = Me, F)

The influence of the substituent on the energy and conformation of the radical leads to a
remarkable increase in stereoseloctivity. Polar substituents OMe and F clearly disfavour
conformer 2B and increase the dihedral angle 8 in conformation 2A. Both effects lead to an

increase of the selectivity from 66:33 (X=Me) to 97:3 (X=OMe), and 95:5 (X=F).
A reverse effect is expected if in radical 6 polar substituents X are attached to the radical

center. Radical 6 was generated via addition of t-butyl radicals to substituted fumarates 5.
Subsequent trapping reactions with BuzSnH leads to products 7 and 8.9
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Again the A-strain conformers 6A are favoured for X=Me, OMe, and Cl. But the energy

difference AEgp-AEga now decreases from 3.6 kcal/mol to 1.7-2.0 kcal/mol if X=Me is exchanged
by the more electronegative substituent OMe and Ci, respectively. This decrease in the energy
difference leads to a decrease in stereoselactivity.10 Now radical 6 with an unpolar substituent
(X=Me) is most selective (96:4), whereas polar groups decrease the selectivity to 84:16 (X=OMe)
and 88:12 (X=Cl), respectively.

Conclusion: The influence of the polarity of substituents X in radicals 2 and 6 clearly
demonstrates that in addition to steric A-strain effects dipole dipole interactions influence the
conformation and the stereoselectivity of radicals.
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Variation of substituent X also influences the SOMO energy of radical 6. But this should have
only a minor effect on the stereoselectivity.
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